department of hack
2015 stories
·
16 followers

2025-03-10 troposcatter

1 Share

I have a rough list of topics for future articles, a scratchpad of two-word ideas that I sometimes struggle to interpret. Some items have been on that list for years now. Sometimes, ideas languish because I'm not really interested in them enough to devote the time. Others have the opposite problem: chapters of communications history with which I'm so fascinated that I can't decide where to start and end. They seem almost too big to take on. One of these stories starts in another vast frontier: northeastern Canada.

It was a time, rather unlike our own, of relative unity between Canada and the United States. Both countries had spent the later part of World War II planning around the possibility of an Axis attack on North America, and a ragtag set of radar stations had been built to detect inbound bombers. The US had built a series of stations along the border, and the Canadians had built a few north of Ontario and Quebec to extend coverage north of those population centers. Then the war ended and, as with so many WWII projects, construction stopped. Just a few years later, the USSR demonstrated a nuclear weapon and the Cold War was on. As with so many WWII projects, freshly anxious planners declared the post-war over and blew the dust off of North American air defense plans. In 1950, US and Canadian defense leaders developed a new plan to consolidate and improve the scattershot radar early warning plan.

This agreement would become the Pinetree Line, the first of three trans-Canadian radar fences jointly constructed and operated by the two nations. For the duration of the Cold War, and even to the present day, these radar installations formed the backbone of North American early warning and the locus of extensive military cooperation. The joint defense agreement between the US and Canada, solidified by the Manhattan Project's dependence on Canadian nuclear industry, grew into the 1968 establishment of the North American Air Defense Command (NORAD) as a binational joint military organization.

This joint effort had to rise to many challenges. Radar had earned its place as a revolutionary military technology during the Second World War, but despite the many radar systems that had been fielded, engineer's theoretical understanding of radar and RF propagation were pretty weak. I have written here before about over-the-horizon radar, the pursuit of which significantly improved our scientific understanding of radio propagation in the atmosphere... often by experiment, rather than model. A similar progression in RF physics would also benefit radar early warning in another way: communications.

One of the bigger problems with the Pinetree Line plan was the remote location of the stations. You might find that surprising; the later Mid-Canada and DEW lines were much further north and more remote. The Pinetree Line already involved stations in the far reaches of the maritime provinces, though, and to provide suitable warning to Quebec and the Great Lakes region stations were built well north of the population centers. Construction and operations would rely on aviation, but an important part of an early warning system is the ability to deliver the warning. Besides, ground-controlled interception had become the main doctrine in air defense, and it required not just an alert but real-time updates from radar stations for the most effective response. Each site on the Pinetree Line would require a reliable real-time communications capability, and as the sites were built in the 1950s, some were a very long distance from telephone lines.

Canada had only gained a transcontinental telephone line in 1932, seventeen years behind the United States (which by then had three different transcontinental routes and a fourth in progress), a delay owing mostly to the formidable obstacle of the Canadian Rockies. The leaders in Canadian long-distance communications were Bell Canada and the two railways (Canadian Pacific and Canadian National), and in many cases contracts had been let to these companies to extend telephone service to radar stations. The service was very expensive, though, and the construction of telephone cables in the maritimes was effectively ruled out due to the huge distances involved and uncertainty around the technical feasibility of underwater cables to Newfoundland due to the difficult conditions and extreme tides in the Gulf of St. Lawrence.

The RCAF had faced a similar problem when constructing its piecemeal radar stations in Ontario and Quebec in the 1940s, and had addressed them by applying the nascent technology of point-to-point microwave relays. This system, called ADCOM, was built and owned by RCAF to stretch 1,400 miles between a series of radar stations and other military installations. It worked, but the construction project had run far over budget (and major upgrades performed soon after blew the budget even further), and the Canadian telecom industry had vocally opposed it on the principle that purpose-built military communications systems took government investment away from public telephone infrastructure that could also serve non-military needs.

These pros and cons of ADCOM must have weighed on Pinetree Line planners when they chose to build a system directly based on ADCOM, but to contract its construction and operation to Bell Canada [1]. This was, it turned out, the sort of compromise that made no one happy: the Canadian military's communications research establishment was reluctant to cede its technology to Bell Canada, while Bell Canada objected to deploying the military's system rather than one of the commercial technologies then in use across the Bell System.

The distinct lack of enthusiasm on the part of both parties involved was a bad omen for the future of this Pinetree Line communications system, but as it would happen, the whole plan was overcome by events. One of the great struggles of large communications projects in that era, and even today, is the rapid rate of technological progress. One of ADCOM's faults was that the immense progress Bell Labs and Western Electric made in microwave equipment during the late '40s meant that it was obsolete as soon as it went into service. This mistake would not be repeated, as ADCOM's maritimes successor was obsoleted before it even broke ground. A promising new radio technology offered a much lower cost solution to these long, remote spans.

At the onset of the Second World War, the accepted theory of radio propagation held that HF signals could pass the horizon via ground wave propagation, curving to follow the surface of the Earth, while VHF and UHF signals could not. This meant that the higher-frequency bands, where wideband signals were feasible, were limited to line-of-sight or at least near-line-of-sight links... not more than 50 miles with ideal terrain, often less. We can forgive the misconception, because this still holds true today, as a rule of thumb. The catch is in the exceptions, the nuances, that during the war were already becoming a headache to RF engineers.

First, military radar operators observed mysterious contacts well beyond the theoretical line-of-sight range of their VHF radar sets. These might have been dismissed as faults in the equipment (or the operator), but reports stacked up as more long-range radar systems were fielded. After the war, relaxed restrictions and a booming economy allowed radio to proliferate. UHF television stations, separated by hundreds of miles, unexpectedly interfered with each other. AT&T, well into deployment of a transcontinental microwave network, had to adjust its frequency planning after it was found that microwave stations sometimes received interfering signals from other stations in the chain... stations well over the horizon.

This was the accidental discovery of tropospheric scattering.

The Earth's atmosphere is divided into five layers. We live in the troposhere, the lowest and thinnest of the layers, above which lies the stratosphere. Roughly speaking, the difference between these layers is that the troposphere becomes colder with height (due to increasing distance from the warm surface), while the stratosphere becomes warmer with height (due to decreasing shielding from the sun) [2]. In between is a local minimum of temperature, called the tropopause.

The density gradients around the tropopause create a mirror effect, like the reflections you see when looking at an air-water boundary. The extensive turbulence and, well, weather present in the troposhere also refract signals on their way up and down, making the true course of radio signals reflecting off of the tropopause difficult to predict or analyze. Because of this turbulence, the effect has come to be known as scattering: radio signals sent upwards, towards the troposphere, will be scattered back downwards across a wide area. This effect is noticeable only at high frequencies, so it remained unknown until the widespread use of UHF and microwave, and was still only partially understood in the early 1950s.

The locii of radar technology at the time were Bell Laboratories and the MIT Lincoln Laboratory, and they both studied this effect for possible applications. Presaging one of the repeated problems of early warning radar systems, by the time Pinetree Line construction began in 1951 the Lincoln Laboratory was already writing proposals for systems that would obsolete it. In fact, construction would begin on both of the Pinetree Line's northern replacements before the Pinetree Line itself was completed. Between rapid technological development and military planners in a sort of panic mode, the early 1950s were a very chaotic time. Underscoring the ever-changing nature of early warning was the timeline of Pinetree Line communications: as the Pinetree Line microwave network was in planning, the Lincoln Laboratory was experimenting with troposcatter communications. By the time the first stations in Newfoundland completed construction, Bell Laboratories had developed an experimental troposcatter communications system.

This new means of long-range communications would not be ready in time for the first Pinetree Line stations, so parts of the original ADCOM-based microwave network would have to be built. Still, troposcatter promised to complete the rest of the network at significantly reduced cost. The US Air Force, wary of ADCOM's high costs and more detached from Canadian military politics, aggressively lobbied for the adoption of troposcatter communications for the longest and most challenging Pinetree Line links.

Bell Laboratories, long a close collaborator with the Air Force, was well aware of troposcatter's potential for early warning radar. Bell Canada and Bell Laboratories agreed to evaluate the system under field conditions, and in 1952 experimental sites were installed in Newfoundland. These tests found reliable performance over 150 miles, far longer than achievable by microwave and---rather conveniently---about the distance between Pinetree Line radar stations. These results suggested that the Pinetree Line could go without an expensive communications network in the traditional sense, instead using troposcatter to link the radar stations directly to each other.

Consider a comparison laid out by the Air Force: one of the most complex communications requirements for the Pinetree Line was a string of stations running not east-west like the "main" line, but north-south from St. John's, Newfoundland to Frobisher Bay, Nunavut. These stations were critical for detection of Soviet bombers approaching over the pole from the northeast, otherwise a difficult gap in radar coverage until the introduction of radar sites in Greenland. But the stations covered a span of over 1,000 miles, most of it in formidably rugged and remote arctic coastal terrain. The proposed microwave system would require 50 relay stations, almost all of which would be completely new construction. Each relay's construction would have to be preceded by the construction of a harbor or airfield for access, and then establishment of a power plant, to say nothing of the ongoing logistics of transporting fuel and personnel for maintenance. The proposed troposcatter system, on the other hand, required only ten relays. All ten would be colocated with radar stations, and could share infrastructure and logistical considerations.

Despite the clear advantages of troposcatter and its selection by the USAF, the Canadian establishment remained skeptical. One cannot entirely blame them, considering that troposcatter communications had only just been demonstrated in the last year. Still, the USAF was footing most of the bill for the overall system (and paying entirely for the communications aspect, depending on how you break down the accounting) and had considerable sway. In 1954, well into construction of the radar stations (several had already been commissioned), the Bell Canada contract for communications was amended to add troposcatter relay in addition to the original microwave scheme. Despite the weaselly contracting, the writing was on the wall and progress on microwave relay stations almost stopped. By the latter part of 1954, the microwave network was abandoned entirely. Bell Canada moved at incredible speed to complete the world's first troposcatter long-distance route, code named Pole Vault.

One of the major downsides of troposcatter communications is its inefficiency. Only a very small portion of the RF energy reaching the tropopause is reflected, and of that, only a small portion is reflected in the right direction. Path loss from transmitter to receiver for long links is over -200 dB, compared to say -130 dB for a microwave link. That difference looks smaller than it is; dB is a logarithmic comparison and the decrease from -130 dB to -200 dB is a factor of ten million.

The solution is to go big. Pole Vault's antennas were manufactured as a rush order by D. S. Kennedy Co. of Massachusetts. 36 were required, generally four per site for transmit and receive in each direction. Each antenna was a 60' aluminum parabolic dish held up on edge by truss legs. Because of the extreme weather at the coastal radar sites, the antennas were specified to operate in a 120 knot wind---or a 100 knot wind with an inch of ice buildup. These were operating requirements, so the antenna had not only to survive these winds, but to keep flexing and movements small enough to not adversely impact performance. The design of the antennas was not trivial; even after analysis by both Kennedy Co. and Bell Canada, after installation some of the rear struts supporting the antennas buckled. All high-wind locations received redesigned struts.

To drive the antennas, Radio Engineering Laboratories of Long Island furnished radio sets with 10 kW of transmit power. Both D. S. Kennedy and Radio Engineering Laboratories were established companies, especially for military systems, but were still small compared to Bell System juggernauts like Western Electric and Northern Electric. They had built the equipment for the experimental sites, though, and the timeline for construction of Pole Vault was so short that planners did not feel there was time to contract larger manufacturers. This turn of events made Kennedy Co. and REL the leading experts in troposcatter equipment, which became their key business in the following decade.

The target of the contract, signed in January of 1954, was to have Pole Vault operational by the end of that same year. Winter conditions, and indeed spring and fall conditions, are not conducive to construction on the arctic coast. All of the equipment for Pole Vault had to be manufactured in the first half of the year, and as weather improved and ice cleared in the mid-summer, everything was shipped north and installation work began. Both militaries had turned down involvement in the complex and time-consuming logistics of the project, so Bell Canada chartered ships and aircraft and managed an incredibly complex schedule. To deliver equipment to sites as early as possible, icebreaker CCGS D'Iberville was chartered. C-119 and DC3 aircraft served alongside numerous small boats and airplanes.

All told, it took about seven months to manufacture and deliver equipment to the Pole Vault sites, and six months to complete construction. Construction workers, representing four or five different contractors at each site and reaching about 120 workers to a site during peak activity, had to live in construction camps that could still be located miles from the station. Grounded ships, fires, frostbite, and of course poor morale lead to complications and delays. At one site, Saglek, project engineers recorded a full 24-hour day with winds continuously above 75 miles per hour, and then weeks later, a gust of 135 mph was observed. Repairs had to be made to the antennas and buildings before they were even completed.

In a remarkable feat of engineering and construction, the Pole Vault system was completed and commissioned more or less on schedule: amended into the contract in January of 1954, commissioning tests of the six initial stations were successfully completed February of 1955. Four additional stations were built to complete the chain, and Pole Vault was declared fully operational December of 1956 at a cost of $24.6 million (about $290 million today).

Pole Vault operated at various frequencies between 650 and 800 MHz, the wide range allowing for minimal frequency reuse---interference was fairly severe, since each station's signal scattered and could be received by stations further down the line in ideal (or as the case may be, less than ideal) conditions. Frequency division multiplexing equipment, produced by Northern Electric (Nortel) based on microwave carrier systems, offered up to 36 analog voice circuits. The carrier systems were modular, and some links initially supported only 12 circuits, while later operational requirements lead to an upgrade to 70 circuits.

Over the following decades, the North Atlantic remained a critical challenge for North American air defense. It also became the primary communications barrier between the US and Canada and European NATO allies. Because Pole Vault provided connections across such a difficult span, several later military communications systems relied on Pole Vault as a backhaul connection.

An inventory of the Saglek site, typical of the system, gives an idea of the scope of each of the nine primary stations. This is taken from "Special Contract," a history by former Bell Canada engineer A. G. Lester:

(1) Four parabolic antennas, 60 feet in diameter, each mounted on seven mass concrete footings. (2) An equipment building 62 by 32 feet to house electronic equipment, plus a small (10 by 10 feet) diversity building. (3) A diesel building 54 by 36 feet, to house three 125 KVA (kilovolt amperes) diesel driven generators. (4) Two 2500 gallon fuel storage tanks. (5) Raceways to carry waveguide and cables. (6) Enclosed corridors interconnecting buildings, total length in this case 520 feet.

Since the Pole Vault stations were colocated with radar facilities, barracks and other support facilities for the crews were already provided for. Of course, you can imagine that the overall construction effort at each site was much larger, including the radar systems as well as cantonment for personnel.

Pole Vault would become a key communications system in the maritime provinces, remaining in service until 1975. Its reliable performance in such a challenging environment was a powerful proof of concept for troposcatter, a communications technique first imagined only a handful of years earlier. Even as Pole Vault reached its full operating capability in late 1956, other troposcatter systems were under construction. Much the same, and not unrelated, other radar early warning systems were under construction as well.

The Pinetree Line, for all of its historical interest and its many firsts, ended as a footnote in the history of North American air defense. More sophisticated radar fences were already under design by the time Pinetree Line construction started, leaving some Pinetree stations to operate for just four years. It is a testament to Pole Vault that it outlived much of the radar system it was designed to support, becoming an integral part of not one, or even two, but at least three later radar early warning programs. Moreover, Pole Vault became a template for troposcatter systems elsewhere in Canada, in Europe, and in the United States. But we'll have to talk about those later.

[1] Alexander Graham Bell was Scottish-Canadian-American, and lived for some time in rural Ontario and later Montreal. As a result, Bell Canada is barely younger than its counterpart in the United States and the early history of the two is more one of parallel development than the establishment of a foreign subsidiary. Bell's personal habit of traveling back and forth between Montreal and Boston makes the early interplay of the two companies a bit confusing. In 1955, the TAT-1 telephone cable would conquer the Atlantic ocean to link the US to Scotland via Canada, incidentally making a charming gesture to Bell's personal journey.

[2] If you have studied weather a bit, you might recognize these as positive and negative lapse rates. The positive lapse rate in the troposphere is a major driver in the various phenomenon we call "weather," and the tropopause forms a natural boundary that keeps most weather within the troposphere. Commercial airliners fly in the lower part of the stratosphere, putting them above most (but not all) weather.

Read the whole story
brennen
17 hours ago
reply
Boulder, CO
Share this story
Delete

Saturday Morning Breakfast Cereal - Theory

2 Shares


Click here to go see the bonus panel!

Hovertext:
Or maybe Queen Elizabeth did it all, especially after she was dead.


Today's News:
Read the whole story
brennen
1 day ago
reply
Boulder, CO
Share this story
Delete

I think it's becoming more and more

1 Share

I think it's becoming more and more clear that the "AI job skills" for the future will not be focused on using AI as an assistant, but in understanding and mitigating the impacts of AI as an adversary.

Read the whole story
brennen
1 day ago
reply
Boulder, CO
Share this story
Delete

You can’t spell “Control Panel Saturday” without “Barclay...

1 Share


You can’t spell “Control Panel Saturday” without “Barclay Shaw illustrates the sickest lizard DJ ever to orbit the Earth”

Read the whole story
brennen
3 days ago
reply
Boulder, CO
Share this story
Delete

Weather balloon launch cuts: An honest look at how it should impact forecasts

1 Share

As we navigate the world right now, we have an obligation to keep our readers informed on the news of the day as it relates to weather forecasting. After all, if you are using this site and others for weather forecast information, you have an interest. But there’s a lot of news out there, and a lot of opinions masquerading as news. No matter your political leanings, the “zone” as it were is flooded and trying to piece together facts vs. stretched truths can be difficult in any ideology. So, periodically I think it helps to take a step back and assess a topic as realistically as possible. This is meant to be as unbiased a look as possible at one topic of note: Weather balloon launches being cut.

What is happening?

Due to staffing constraints, as a result of recent budget cuts and retirements, the National Weather Service has announced a series of suspensions involving weather balloon launches in recent weeks.

On February 27, it was announced that balloon launches would be suspended entirely at Kotzebue, Alaska due to staffing shortages. In early March, Albany, NY and Gray, Maine announced periodic disruptions in launches. Since March 7th, it appears that Gray has not missed any balloon launches through Saturday. Albany, however, has missed 14 of them, all during the morning launch cycle (12z).

Sunday morning’s upper air launch map showing a gaping hole over the Rockies and some of the Plains. (University of Wyoming)

The kicker came on Thursday afternoon when it was announced that all balloon launches would be suspended in Omaha, NE and Rapid City, SD due to staffing shortages. Additionally, the balloon launches in Aberdeen, SD, Grand Junction, CO, Green Bay, WI, Gaylord, MI, North Platte, NE, and Riverton, WY would be reduced to once a day from twice a day.

What are weather balloons anyway?

In a normal time, weather balloons would be launched across the country and world twice per day right at about 8 AM ET and 8 PM ET (one hour earlier in winter), or what we call 12z and 00z. That’s Zulu time, or Noon and Midnight in Greenwich, England. Rather than explain the whole reasoning behind why we use Zulu time in meteorology, here’s a primer on everything you need to know. Weather balloons are launched around the world at the same time. It’s a unique collaboration and example of global cooperation in the sciences, something that has endured for many years.

An example of a radiosonde. (NOAA)

These weather balloons are loaded up with hydrogen or helium, soar into the sky, up to and beyond jet stream level, getting to a height of over 100,000 feet before they pop. Attached to the weather balloon is a tool known as a radiosonde, or sonde for short. This is basically a weather sensing device that measures all sorts of weather variables, like temperature, dewpoint, pressure, and more. Wind speed is usually derived from this based on GPS transmitting from the sonde. What goes up must come down, so when the balloon pops, that radiosonde falls from the sky. A parachute is attached to it, slowing its descent and ensuring no one gets plunked on the head by one. If you find a radiosonde, it should be clearly marked, and you can keep it, let the NWS know you found it, or dispose of it properly. In some instances, there may still be a way to mail it back to the NWS (postage and envelope included and prepaid).

A radiosonde with mailing instructions. (NWS Pittsburgh)

What does the data from weather balloons do?

In order to run a weather model, you need an accurate snapshot of what we call the initial conditions. What is the weather at time = zero? That’s your initialization point. Not coincidentally, weather models are almost always run at 12z and 00z, to time in line with retrieving the data from these weather balloons. It’s a critically important input to almost all weather modeling we use. The data from balloon launches can be plotted on a chart called a sounding, which gives meteorologists a vertical profile of the atmosphere at a point. During severe weather season, we use these observations to understand the environment we are in, assess risks to model output, and make changes to our own forecasts. During winter, these observations are critical to knowing if a storm will produce snow, sleet, or freezing rain. Observations from soundings are important inputs for assessing turbulence that may impact air travel, marine weather, fire weather, and air pollution. Other than some tools on some aircraft that we utilize, the data from balloon launches is the only real good verification tool we have for understanding how the upper atmosphere is behaving.

Haven’t we lost weather balloon data before?

We typically lose out on a data point or two each day for various reasons when the balloons are launched. We’ve also been operating without a weather balloon launch in Chatham, MA for a few years because coastal erosion made the site too challenging and unsafe. Tallahassee, FL has been pausing balloon launches for almost a year now due to a helium shortage and inability to safely switch to hydrogen gas for launching the balloons. In Denver, balloon launches have been paused since 2022 due to the helium shortage as well.

Those are three sites though, spread out across the country. We are doubling or tripling the number of sites without launches now, many in critical areas upstream of significant weather.

Can’t satellites replace weather balloons?

Yes and no. On one hand, satellites today are capable of incredible observations that can rival weather balloons at times. And they also cover the globe constantly, which is important. That being said, satellites cannot completely replace balloon launches. Why? Because the radiosonde data those balloon launches give us basically acts as a verification metric for models in a way that satellites cannot. It also helps calibrate derived satellite data to ensure that what the satellite is seeing is recorded correctly.

But in general, satellites cannot yet replace weather balloons. They merely act to improve upon what weather balloons do. A study done in the middle part of the last decade found that wind observations improved rainfall forecasts by 30 percent. The one tool at that time that made the biggest difference in improving the forecast were radiosondes. Has this changed since then? Yes, almost certainly. Our satellites have better resolution, are capable of getting more data, and send data back more frequently. So certainly it’s improved some. But enough? That’s unclear.

An analysis done more recently on the value of dropsondes (the opposite of balloon launches; this time the sensor is dropped from an aircraft instead of launched from the ground) in forecasting west coast atmospheric rivers showed a marked improvement in forecasts when those targeted drops occur. Another study in 2017 showed that aircraft observations actually did a good job filling gaps in the upper air data network. Even with aircraft observations, there were mixed studies done in the wake of the COVID-19 reduction in air travel that suggested no impact could be detected above usual forecast error noise or that there was some regional degradation in model performance.

The element with the second highest impact on the NASA GEOS model? Radiosondes.
(NASA)

But to be quite honest, there have not been a whole lot of studies that I can find in recent years that assess how the new breed of satellites has (or has not) changed the value of upper air observations. The NASA GEOS model keeps a record of what data sources are of most impact to model verification with respect to 24 hour forecasts. Number two on the list? Radiosondes. This could be considered probably a loose comp to the GFS model, one of the major weather models used by meteorologists globally.

What’s the verdict?

In reality, the verdict in all this is to be determined, particularly statistically. Will it make a meaningful statistical difference in model accuracy? Over time, yes probably, but not in ways that most people will notice day to day.

However, based on 20 years of experience and a number of conversations about this with others in the field, there are some very real, very serious concerns beyond statistics. One thing is that the suspended weather balloon launches are occurring in relatively important areas for weather impacts downstream. A missed weather balloon launch in Omaha or Albany won’t impact the forecast in California. But what if a hurricane is coming? What if a severe weather event is coming? You’ll definitely see impacts to forecast quality during major, impactful events. At the very least, these launch suspensions will increase the noise to signal ratio with respect to forecasts.

In other words, there may be situations where you have a severe weather event expected to kickstart in one place but the lack of knowing the precise location of an upper air disturbance in the Rockies thanks to a suspended launch from Grand Junction, CO will lead to those storms forming 50 miles farther east than expected. In other words, losing this data increases the risk profile for more people in terms of knowing about weather, particularly high impact weather.

A map of what’s happening 20,000 feet over our heads this morning, showing a strong disturbance exiting an area where upper air observations were sparse yesterday and this morning. An example of a situation where those would be helpful. (Tropical Tidbits)

Let’s say we have a hurricane in the Gulf that is rapidly intensifying, and we are expecting it to turn north and northeast thanks to a strong upper air disturbance coming out of the Rockies, leading to landfall on the Alabama coast. What if the lack of upper air observations has led to that disturbance being misplaced by 75 miles. Now, instead of Alabama, the storm is heading toward New Orleans. Is this an extreme example? Honestly, I don’t think it is as extreme as you think. We often have timing and amplitude forecast issues with upper air disturbances during hurricane season, and the reality is that we may have to make some more frequent last second adjustments now that we didn’t have to in recent years. As a Gulf Coast resident, this is very concerning.

I don’t want to overstate things: Weather forecasts aren’t going to dramatically degrade day to day because we’ve reduced some balloon launches across the country. They will degrade, but the general public probably won’t notice much difference 90 percent of the time. But that 10 percent of the time? It’s not that the differences will be gigantic. But the impact of those differences? That could very well be gigantic, put more people in harm’s way, and increase the risk profile for an awful lot of people. That’s what this does: It increases the risk profile, it will lead to reduced weather forecast skill scores, and it may lead to an event that surprises a portion of the population that isn’t used to be surprised in the 2020s. To me, that makes the value of weather balloons very, very significant, and I find these cuts to be extremely troubling.

One addendum that I have edited to add: This is our current situation. It’s a static look at a fluid problem. Should further cuts in staffing lead to further suspensions in weather balloon launches, we will see this problem magnify more often and involve bigger misses. In other words, the impacts here may not be linear, and repeated increased loss of real-world observational data will lead to very significant degradation in weather model performance that may be noticed more often than described above.

Read the whole story
brennen
3 days ago
reply
Boulder, CO
Share this story
Delete

Cassandra Granade 🏳️‍⚧️ @xgranade@wandering.shop

1 Share

Cassandra Granade 🏳️‍⚧️ @xgranade@wandering.shop

@noracodes Everyone loves talking about computers like they're magic, but no one wants to do the hard work of maintaining an arcane order dedicated to the esoteric arts through centuries of the ever-shifting concerns of mere mortals.

Read the whole story
brennen
3 days ago
reply
Boulder, CO
Share this story
Delete
Next Page of Stories